
Controller Tuning for Active Queue Management Using

a Parameter Space Method∗
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Abstract

In recent years, different mathematical models have been proposed for widely used

internet control mechanisms. Simple low order controllers (such as PID which is easy

to implement) are desired for network traffic management. In this paper, we discuss

tuning of these linear controllers by using a parameter space method, which computes

stability regions of a class of quasi-polynomials in terms of free controller parameters

and PID controller parameters are found by minimization of mixed sensitivity function

in stability region.

1 Introduction

Several active queue management (AQM) schemes supporting transmission control protocol

(TCP) exist in literature [1, 2, 3, 4, 5]. Since simple low order controllers are desired in

implementation, design of such controllers is considered in [2, 4, 6, 7, 8, 9] for AQM. In

[2], the TCP avoidance mode is modeled by delay differential equations with nonlinearity

and PI controller proposed for control mechanism. Although the controller design guarantee

some robustness for parametric uncertainties, the high frequency dynamics are considered

as parasitic. We will take into account the plant structure and design the PID controller

without simplification (except linearization of TCP).

In this paper, tuning of these linear controllers are discussed such that overall system

ensures robust stability and good performance. By using a parameter space method [10], we

compute stability regions of a class of quasi-polynomials in terms of free controller parameters

[11]. We find the optimal PID controller parameters by minimization of mixed sensitivity

function in stability region.

The outline of paper as follows: In section 2, the mathematical model of AQM scheme

and the linearized plant to be controlled is given [2, 6]. The stable region of PID parameters
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achieving stable close loop is found and optimal parameter search resulting robust stability

and good performance is proposed in section 3. Section 4 gives the simulation results and dis-

cusses robustness and performance of controller. The paper ends with section 5, concluding

remarks.

2 Mathematical Model of AQM Scheme Supporting

TCP Flows

We assume that the network configuration is same as in [2, 6], i.e., network has a single

router receiving N TCP flows. We consider a model for the congestion avoidance mode

only. TCP slow start and time out mechanisms are ignored. For the rest of the section, we

reviewed the mathematical model for AQM Scheme in [6].

When one TCP flows interacting for single router, additive-increase multiplicative-decrease

behavior of TCP has been modeled in [1] by difference equation

dW (t) =
dt

R(t)
−

W (t)

2
dN(t) (2.1)

where R(t) = q(t)
C

+ Tp and other variables are defined as:

q(t)
.
= queue length at router,

W (t)
.
= congestion window size,

R(t)
.
= round trip time delay,

dN(t)
.
= number of marks the flow suffers,

Tp
.
= propagation delay,

C
.
= router’s transmission capacity.

For N homogeneous TCP sources and one router, nonlinear model of AQM implementation

is given in [2] as

Ẇ (t) =
1

R(t)
−

W (t)

2

W (t − R(t))

R(t − R(t))
p(t − R(t)) (2.2)

q̇(t) =

[

N(t)

R(t)
W (t) − C

]+

(2.3)

where p(t) is the probability of packet mark used by AQM mechanism at the router and

[x]+
.
=

{

x x ≥ 0

0 x < 0
.

The linearization of (2.2) and (2.3) about the operating point (R0,W0, p0) is proposed
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in [2]. The operating point is defined by the derivations in [2] as

R0 =
q0

C
+ Tp, (2.4)

W0 =
R0C

N
, (2.5)

p0 =
2

W 2
0

. (2.6)

Note that linearization of (2.2) and (2.3) ignores the time-varying nature of the round-trip

time delay (t − R(t)) and approximates as (t − R0).
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Figure 2. Overall system

The linearized model of the plant is given in [2] as follows:

P (s) =
Np(s)

Dp(s)
=

Ke−R0s

W0R
2
0s

2 + (W0 + 1) R0s + 2 + R0se−R0s
. (2.7)

where K =
NW 3

0

2
. Given the plant, P , a PI controller, C, is proposed in [2] and H∞ controller

is suggested in [6] for the feedback loop in Figure 2. We will consider in this paper a PID

controller which has a better performance than a PI controller and simple structure for

implementation compared to H∞ controller. A method for tuning of PID parameters will

be given in the next sections. Also, the high frequency dynamics of system (the delay term

at the denominator of P ) is considered as parasitic in PI controller design [2]. However, we

will include these effects in the design of PID controller.

3 Tuning of PID Parameters

In this section, we will find the controller parameter space such that closed loop system is

stable by using parameter space method [10]. This approach separates parameter space of

PID controller into stable and unstable region. The stability of region is checked by direct

method in [11]. The rest of section discusses finding optimal parameters in controller param-

eter space by numerical search algorithm. The optimal parameters achieves the minimum of

mixed sensitivity function in admissible parameter values.

3.1 Finding PID Parameter Space

For the plant, P , the closed loop system in Figure 2 is stabilized by the PID controller,

C(s) = KP + KDs +
KI

s
. (3.8)
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The triplet (KP , KI , KD) stabilizes the overall system if and only if all the dominant roots

of closed loop characteristic equation,

CE(s) = sDp(s) + (KI + KP s + KDs2)NP (s) (3.9)

= (W0R0s
3 + (W0 + 1)R0s

2 + 2s) + (KKI + KKP s + (KKD + R0)s
2)e−R0s,

lies on left hand side of the complex plane. The algorithm in [10] offers a parameter space

approach to certain class of quasi-polynomials in the form of

G(s) = (r0 + r1s + r2s
2)A(s) + B(s)esL, L > 0 (3.10)

where A and B are polynomials with degrees m and n respectively satisfying n ≥ m + 2.

It computes the stable (r0, r1, r2) regions. It is not difficult to form the quasi-polynomial as

the characteristic equation of our time delayed system in (3.9) as

r0 = KKI , (3.11)

r1 = KKP ,

r2 = KKD + R0,

A(s) = 1,

B(s) = W0R0s
3 + (W0 + 1)R0s

2 + 2s,

L = R0.

As explained in [10], a stable quasi-polynomial will be unstable only when a left half

plane root transients to right half plane. Since KP , KD, KI and h change continuously,

characteristic equation also changes continuously. Thus, for some (KP , KD, KI) triplet, some

roots of (3.9) lie on imaginary axis. From these (KP , KD, KI), we can form the stability

boundaries in the parameter space. In [10], these crossings are classified into 3 cases and for

our problem the boundaries can be found as:

1. Real Root Boundary (RRB), a root crosses imaginary axis at origin, i.e., G(0) = 0, the

boundary is r0 = 0 line, equivalently, KI = 0.

2. Infinite Root Boundary (IRB) when a root crosses the imaginary axis at infinity, since

m = 0 and n = 3, the quasi-polynomial is retarded type (n > m + 2) and no infinite

root boundary exists.

3. Complex Root Boundary (CRB) when a pair of complex conjugate roots crosses the

imaginary axis, i.e., G(jω) = 0, then we can separate real and imaginary parts as,

[

1 −ω2

0 0

] [

r0

r2

]

+

[

ω((W0R
2
0ω

2 − 2) sin R0ω − (W0 + 1)R0ω cos R0ω)

−ω(W0R
2
0ω

2 − 2) cos R0ω − (W0 + 1)R0ω sin R0ω + r1)

]

=

[

0

0

]
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If we fix r1 = r∗1, the solution of the above system of equation exists only for real zeros

of ωgi of

g(ω) = ωr∗1 + (W0R
2
0ω

2 − 2)ω sin R0ω − (W0 + 1)R0ω
2 cos R0ω. (3.12)

Each positive zero corresponds a straight line as CRB in (r2, r0) plane with equation,

r0 = ω2
gir2 − ωg((W0R

2
0ω

2
g − 2) sin R0ωg − (W0 + 1)R0ωg cos R0ωg). (3.13)

Stability boundaries (RRB, IRB, CRB) can be found as explained above. For each r1, we

can find a region in (r2, r0) plane, and for various r1 values, we can form a three dimensional

region, Πr. Any triplet in this region as PID parameters (i.e., (r0, r1, r2) ∈ Πr) ensures

stable closed loop system. Note that actual PID parameters are not the triplet (r0, r1, r2),

but (KP , KI , KD). After the region, Πr, obtained, we can transform to another region, ΠK ,

for the triplet (KP , KI , KD) by linear transformation in (3.11). Also, in order to check the

inside of the region, ΠK , is stable or not, we used the method in [11], which is not discussed

here.

3.2 Computation of Optimal PID Parameters

We aim to find the optimal PID parameters such that robust stability and good performance

of closed loop system is guaranteed. It is well known that if a controller gives small H∞

norm of mixed sensitivity function, overall system has robust stability and good performance.

Since our controller has three parameters, (KP , KI , KD), we can search the optimal triplet,

(KP,opt, KI,opt, KD,opt) in ΠK such that the mixed sensitivity function,

Ψ(KP , KI , KD) = sup
ω∈[0,∞)

{

|W1(jω)S(jω)|2 + |W2(jω)T (jω)|2
}

, (3.14)

attains its minimum value. The weight functions W1 and W2 are finite dimensional terms as

a design parameter for robustness and performance. The sensitivity, S, and complementary

sensitivity, T , functions are defined as,

S(s) = (1 + P (s)C(s))−1

T (s) = P (s)C(s)(1 + P (s)C(s))−1

where P and C are given in (2.7) and (3.8) respectively. Formally, we can defined the

numerical search problem as: Find the triplet, (KP,opt, KI,opt, KD,opt) such that

Ψ(KP,opt, KI,opt, KD,opt) ≤ Ψ(KP , KI , KD), ∀ (KP , KI , KD) ∈ ΠK , (3.15)

the inequality is satisfied.
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4 Simulations

We simulated the nonlinear model defined by equations (2.2) and (2.3) for the dynamics

of N TCP flows loading a router by using simulink and MATLAB. The numerical values of

simulations are same as in [6]:

• Nominal values known to the controller: Nn = 50 TCP sessions, Cn = 300 packets/sec,

Tp = 0.2 sec, by simple calculation R0n = 0.533 sec and W0n = 3.2 packets. Desired

queue length is q0 = 100 packets.

• Real values of plant: N = 40 TCP sessions, C = 250 packets/sec, Tp = 0.3 sec, by

simple calculation R0 = 0.7 sec and W0 = 4.375 packets.

The above data will be used to see the performance of overall system. In order to analyze

the robustness of closed loop system with respect to variations in the network parameters,

the following scenario is considered: outgoing link capacity, C, is a normally distributed

random signal with mean 250 packets/sec and variance 50 added to a pulse of period 60sec,

amplitude 60 packets/sec. The number of TCP flows N is a normally distributed random

signal with mean 45 and variance 30 added to a pulse of period 20 sec and amplitude 10.

The propagation delay Tp is a normally distributed random signal with mean 0.8 sec and

variance 0.05 sec added to a pulse of period 20 sec and amplitude 0.2 sec. The controllers

have the following values known to them: C = 300 packets/sec, N = 50, Tp = 0.7sec and

desired queue length is q0 = 100 packets.

4.1 Tuning PID Parameters

For the given network parameters, we can write the characteristic equation from (3.10),

G(s) = (r0 + r1s + r2s
2)A(s) + B(s)esL (4.16)

= (r0 + r1s + r2s
2) + (1.706s3 + 2.239s2 + 2s)e0.533s

= (819.2KI + 819.2KP s + (819.2KD + 0.533)s2) + (1.706s3 + 2.239s2 + 2s)e0.533s

We will work with (r0, r1, r2) triplet and calculate the PID parameters, (KP , KD, KI), at the

end. It is clear that for this plant m = 0 and n = 3. Also note that B(s) does not contain

any constant term. Therefore, we do not encounter any infinite root boundary (IRB) and

have always a real root boundary (RRB) which is r0 = 0.

In order to determine complex root boundaries (CRB), we should first decide, over which

interval we should sweep fixed r1. If we acquire for (3.12), considering the values for C, N ,

W0, R0, we obtain Figure 1. The interval, in which maximum number of ωgi is produced,

can be better observed when we look in the interval, ω ∈ [0, 120] as in Figure 2. As we

easily observe from Figure 2 that it is enough to sweep r1 between [−2, 8] in our problem.

Therefore we obtained the boundary lines for stability on the (r0, r2) plane for each fixed
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Figure 1: Plot of g(ω)
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Figure 2: Plot of g(ω) zoomed
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Figure 3: Plot of Ψ
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Figure 4: Plot of the region when r∗1 = 3.15

r1. These boundary lines yield a polygon in which we have stability. After sweeping r1 and

combining all polygons, we obtain the stability space for controller parameters.

In order to find the optimal PID parameters, we define the cost function, Ψ, with weight

functions,

W1(s) =
1 + 0.01s

0.01 + s
,

W2(s) = s + 1.

In Figure 3, for fixed r1 ∈ [−2, 8], the minimum value of cost function in (r0, r2) plane

is given. The minimum value is achieved at r1,opt = 3.15. Figure 4 shows the controller

parameter space in (r0, r2) plane when r1 = 3.15. The optimal point is found as r1,opt = 3.15,

r2,opt = 2.2460 and r0,opt = 1.2189. These normalized values correspond to the KP.opt =

3.845 10−3, KD,opt = 2.091 10−3 and KI,opt = 1.48 10−3. The location of optimal, center and

7



one of the boundary points can be seen in Figure 4.

4.2 Performance and Robustness of System

After we found the optimal point, we need to simulate the performance of our controller on

the plant presented above. In [6], the performance of H∞ and PI controller is compared.

Using the simulation parameters of [6](given above), we obtained Figure 5, from which the

comparison between our PID, H∞ and PI1 and PI2 controllers can be verified.
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Figure 5: Performance comparison of PID,

H∞, PI1 and PI2 controllers
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Figure 6: Robustness comparison of PID, H∞,

PI1 and PI2 controllers

Figure 5 reveals that PID controller responses better than other controllers. Although rise

time is longer, settling time of PID is shorter than the other ones. Also note that there is

no overshoot for the proposed PID controller.

For variation in network parameters as shown in Figure 7, robust performance of our global

optimum point is obtained in Figure 6. We observe that the PID controller which we design

using the method introduced in [10] has similar robust performances with other proposed

controllers of [2, 6].

4.3 Remarks

1) Since PID controller design is based on linearization of nonlinear plant, we may encounter

different points in the stable space which give us better performance and robustness. For

example, in our simulations, the results of a PID controller with parameters r1 = 1, r2 =

0.7016 and r0 = 0.839 (KP = 1.221 10−3, KD = 2.054 10−4 and KI = 1.024 10−3) are given

in Figure 8 and 9. It can be seen that the controller has a better settling and rise time with

an overshoot. However, the robust performance of optimal point is better than the point

(r1 = 1, r2 = 0.7016 and r0 = 0.839).
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Figure 7: Values of C, N and Tp corresponding to Figure 6
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Figure 8: Performance comparison of when

r1 = 1, r2 = 0.7016 and r0 = 0.839
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Figure 9: Robustness comparison of when

r1 = 1, r2 = 0.7016 and r0 = 0.839

2) For confirmation we did several performance simulations for the points, which lie on

the center of the stability polygon, or on the boundary of the stability polygon (shown with

diamond and circle symbol in Figure 4), which we think intuitively that, they yield stable

and unstable responses, respectively.

Figure 10 and 12 are the response of the center and response of the boundary point

respectively for the r1=3.15 polygon. We can see that stability is violated as we move to the

boundary which is naturally expected. This violation can also be observed from the robust

performance of the boundary in 13. The robust performance difference is very significant

when we compare Figure 6 and 13. For the boundary, the robust response in queue length

deviates in [0, 250], unlikely for the optimal point, this deviation is in [50, 140].
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Figure 10: Performance comparison of central

point
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Figure 11: Robustness comparison of central

point
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Figure 12: Performance comparison of bound-

ary point
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Figure 13: Robustness comparison of bound-

ary point

5 Concluding Remarks

We proposed a PID controller for robust AQM control scheme supporting TCP flows. Tuning

algorithm for PID controller is given based on [10, 11] and numerical search algorithm for

minimization of mixed sensitivity cost function. We compared our controller performance

and robustness with other controllers studied in [2, 6]. For the application on AQM sup-

porting TCP flows, we obtained relatively good performances compared to RED, PI1 and

PI2 controllers by achieving fast transients and low oscillatory behavior.
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