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Abstract— In this paper we consider the computation ofH∞

norm of retarded time-delay systems with discrete pointwise
state delays. It is well known that in the finite dimensional case
H∞ norm of a system is computed using the connection between
the singular values of the transfer function and the imaginary
axis eigenvalues of an Hamiltonian matrix. We show a similar
connection between the singular values of a transfer function
of a time-delay system and the imaginary axis eigenvalues ofan
infinite dimensional operator Lξ. Using spectral methods, this
linear operator is approximated with a matrix. The approx-
imate H∞ norm of the time-delay system is calculated using
the connection between the imaginary eigenvalues of this matrix
and the singular values of a finite dimensional approximation
of the time-delay system. Finally the approximate results are
corrected by solving a set of equations which are obtained from
the reformulation of the eigenvalue problem for Lξ as a finite
dimensional nonlinear eigenvalue problem.

I. I NTRODUCTION

In robust control of linear systems, stability and perfor-
mance criteria are often expressed byH∞ norms of appro-
priately defined transfer functions. Therefore, the availability
of robust methods to computeH∞ norms is essential in a
computer aided control system design [11].

The computation ofH∞ norm for the finite dimensional
plants is based on the relation between the existence of the
singular values of the transfer function equal to the fixed
value and the existence of the imaginary axis eigenvalues
of the corresponding Hamiltonian matrix of the same fixed
value [6]. This relation allows the computation ofH∞ norm
via the well-known level set method [1]. It is possible to
set the level for the singular values of the transfer function
using the relation above and achieve quadratically convergent
algorithms inH∞ norm computation for finite dimensional
plants [2], [5].

In this paper, we consider the computation of theH∞

norm of the stable time-delay systemG with the transfer
function representation,

G(s) = C (sI − A0 −
∑m

i=1 Aie
−τis)

−1
B + D (1)

where the system matrices areAn×n
i , Bn×nu , Cny×n,

Dny×nu , i = 0, . . . , m are real-valued and the time delays,
(τ1, . . . , τm), are nonnegative real numbers. Equivalently, the
H∞ norm of (1) is defined as the largest singular value of
the G(jω) over all the frequency interval.

In Section II, it is shown that givenξ > 0, the existence of
the singular values of the transfer function (1) equal toξ is
equivalent to the existence of the imaginary axis eigenvalues
of the linear infinite-dimensional operatorLξ.
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By this relation, we extended the level set methods to the
time-delay systems. The difference lies in the fact that in
every iteration of the levelξ, the imaginary axis eigenvalues
of the infinite-dimensional linear operatorLξ are required in-
stead of that of Hamiltonian matrix in the finite dimensional
delay-free case.

In Section III, we approximate the infinite-dimensional
operatorLξ by a finite-dimensional matrix approximation
LN

ξ . We show that for a fixed level setξ > 0, there is
a relation between the imaginary axis eigenvalues of the
matrix LN

ξ and the singular values of a finite-dimensional
approximation ofG equal to ξ. Therefore, theH∞ norm
calculated by the level set methods andLN

ξ is theH∞ norm
of the finite dimensional approximation ofG.

In Section IV, we correct the approximate results by
using the property that the eigenvalues of the linear infinite
dimensional operatorLξ appear as solutions of a finite
dimensional nonlinear eigenvalue problem. This allows to
write the conditions to characterize the peaks in singular
value plot and correct the approximateH∞ norm.

Two numerical algorithms based on level set methods [6],
[5] for H∞ norm computation of the time-delay system are
given in Section V. A numerical example and concluding
remarks are given in Section VI and VII.

Notation:
The notation in the paper is standard and given below.

C, R : the field of the complex and real numbers,
Cn : n-dimensional complex space,
A∗ : complex conjugate transpose of the matrixA,

A−T : transpose of the inverse matrix ofA,
D(.) : domain of an operator,

σi(A) : ith singular value ofA,
ℜ(u) : real part of the complex numberu,
ℑ(u) : imaginary part of the complex numberu.

det(A) : determinant of the matrixA.
τmax : the maximum of the delays(τ1, . . . , τm) in (1).

C : the space of continuous complex functions.

II. L INEAR INFINITE-DIMENSIONAL EIGENVALUE

PROBLEM

The connection between the singular values of a transfer
function and the imaginary eigenvalues of a corresponding
Hamiltonian matrix is given in [6], [2] that laid the basis for
the established level set methods to computeH∞ norms. The
following theorem generalizes this connection to the time-
delay systems:

Theorem 2.1:Let ξ > 0 be such that the matrix

Dξ := DT D − ξ2I



is non-singular. Forω ≥ 0, the matrixG(jω) has a singular
value equal toξ > 0 if and only if λ = jω is an
eigenvalue of the linear infinite dimensional operatorLξ on
X := C([−τmax, τmax], C

2n) which is defined by

D(Lξ) = {φ ∈ X : φ′ ∈ X,

φ′(0) = M0φ(0) +
m

∑

i=1

(Miφ(−τi) + M−iφ(τi))}, (2)

Lξφ = φ′, φ ∈ D(Lξ) (3)

with

M0 =

[

A0 − BD−1
ξ DT C −BD−1

ξ BT

ξ2CT D−T
ξ C −AT

0 + CT DD−1
ξ BT

]

,

Mi =

[

Ai 0
0 0

]

, M−i =

[

0 0
0 −AT

i

]

, 1 ≤ i ≤ N.

Proof. The proof is given in Appendix, Section IX.
Equivalently Theorem 2.1 can be stated that there is a

singular value ofG equal toξ at ω = ω0, σi(G(jω0)) = ξ,
if and only if the eigenvalue problem for the linear operator
Lξ

(λI − Lξ)u = 0 : λ ∈ C, u ∈ X, u 6= 0. (4)

has a solution forλ = jω0.
Although the operatorLξ generally has infinite number of

eigenvalues, one can show that the number of eigenvalues
on the imaginary axis is always finite. Therefore, eigenvalue
problem (4) is computationally well-posed.

Proposition 2.2:λ is an eigenvalue of the linear operator
Lξ if and only if −λ̄ is an eigenvalue of the linear operator
Lξ.
Proof. The proof is given in Appendix, Section IX.

By Proposition 2.2, the set of eigenvalues ofLξ is sym-
metric with respect to the imaginary axis. In the delay-free
case, the operatorLξ reduces to a Hamiltonian matrix.

The key role of Theorem 2.1 is that it reduces the
H∞ norm computation of (1) into the bisection search for
maximum level setξ for which the linear operatorLξ has
imaginary axis eigenvalues.

Instead of solving the difficult linear infinite dimensional
eigenvalue problem, we can use the connection in Theo-
rem 2.1 and apply the level set methods for theH∞ norm
computation of (1) in two steps:

1) The approximate solution of the eigenvalue problem
can be calculated by solving the standard linear eigen-
value problem of the discretized linear operator ofLξ.

2) The approximate results can be corrected by using
the property that the eigenvalues of the linear infinite
dimensional operatorLξ appear as solutions of a finite
dimensional nonlinear eigenvalue problem.

The approximation of the linear operatorLξ and the
corresponding standard eigenvalue problem (4) is given in
Section III. The correction algorithm of the approximate
results in the second step is explained in Section IV.

III. F INITE-DIMENSIONAL APPROXIMATION

In this section, the linear infinite dimensional eigenvalue
problem (4) is discretized based on approximating the
infinite-dimensional operatorLξ by a matrix using aspectral
method(see, e.g. [9], [3], [4]). Given a positive integerN ,
we consider a meshΩN of 2N + 1 distinct points in the
interval [−τmax, τmax]:

ΩN = {θN,i, i = −N, . . . , N}, (5)

where

−τmax ≤ θN,−N < . . . < θN,0 = 0 < · · · < θN,N ≤ τmax.

This allows to replace the continuous spaceX with the
spaceXN of discrete functions defined over the meshΩN ,
i.e. any functionφ ∈ X is discretized into a block vector
x = [xT

−N · · · xT
N ]T ∈ XN with components

xi = φ(θN,i) ∈ C2n, i = −N, . . . , N.

Let PNx, x ∈ XN be the uniqueC2n valued interpolating
polynomial of degree≤ 2N satisfying

PNx(θN,i) = xi, i = −N, . . . , N.

In this way, the operatorLξ over X can be approximated
with the matrixLN

ξ : XN → XN , defined as
(

LN
ξ x

)

i
= (PNx)

′
(θN,i), i = −N, . . . ,−1, 1, . . . , N

(

LN
ξ x

)

0
= M0PNx(0) +

m
∑

i=1

(MiPNx(−τi)

+M−iPNx(τi)) (6)

Using the Lagrange representation ofPNx,

PNx =
∑N

k=−N lN,k xk,

where the Lagrange polynomialslN,k are real valued poly-
nomials of degree2N satisfying

lN,k(θN,i) =

{

1 i = k,

0 i 6= k,

we obtain the explicit form

L
N
ξ =





































d−N,−N . . . d−N,N

...
...

d−1,−N . . . d−1,N

a−N . . . aN

d1,−N . . . d1,N

...
...

dN,−N . . . dN,N





































∈R
(2N+1)(2n)×(2N+1)2n,

where
di,k = l′N,k(θN,i)I, i, k ∈ {−N, . . . , N}, i 6= 0

a0 = M0 x0 +
∑m

k=1 (MklN,k(−τk) + M−klN,k(τk))
ak =

∑m

k=1 (MklN,k(−τk) + M−klN,k(τk))
k ∈ {−N, . . . , N}, k 6= 0.

Note that all the problem specific information and the
parameterξ are concentrated in the middle row ofLN

ξ , i.e.
the elements(a−N , . . . , aN), while all other elements ofLN

ξ

can be computed beforehand.



The matrix LN
ξ is a dense matrix with dimensions

(2N + 1)(2n) × (2N + 1)(2n). Using the approach at Sec-
tion 2.2.2 in [10] based on appropriate choice of the poly-
nomial basis and the grid, the eigenvalue problem forLN

ξ

can be written as a sparse generalized eigenvalue problem.
Therefore, large-scale methods can be utilized for the linear
eigenvalue problem.

Since the methods for computingH∞ norms proposed in
[7] are based on checking the presence of eigenvalues ofLN

ξ

on the imaginary axis and thus strongly rely on the symmetry
of the eigenvalues with respect to the imaginary axis, it is
important that this property ispreservedin the discretization.
The following Proposition gives the condition on the mesh
such that this symmetry holds.

Proposition 3.1: If the meshΩN satisfies

θN,−i = −θN,i, i = 1, . . . , N, (7)
then the following result hold: for allλ ∈ C, we have

det
(

λI − LN
ξ

)

= 0 ⇔ det
(

−λ̄ − LN
ξ

)

= 0. (8)
Proof. The proof is given in Appendix, Section IX.

We are primarily interested in the eigenvalues ofLξ on the
imaginary axis. These eigenvalues are typically among the
smallest eigenvalues and one can easily show that the indi-
vidual eigenvalues ofLN

ξ exhibit spectral convergence to the
corresponding eigenvalues ofLξ (following the lines of [3]).
Since the symmetry property of the spectrum is preserved in
the discretization, a small value ofN is sufficient in most
practical problems for computing a good approximation of
theH∞-norm which can be employed as a starting point for
a direct computation.

IV. CORRECTION OFH∞ NORM

By using the finite dimensional level set methods, the
largest level setξ whereLN

ξ has imaginary axis eigenvalues
and their corresponding frequencies are computed. In the
correction step, these approximate results are corrected by
using the property that the eigenvalues of theLξ appear as
solutions of a finite dimensional nonlinear eigenvalue prob-
lem. The following theorem establishes the link between the
linear infinite dimensional (4) and the nonlinear eigenvalue
problem.

Theorem 4.1:Let ξ > 0 be such that the matrix
Dξ := DT D − ξ2I

is non-singular. Then,λ is an eigenvalue of linear operator
Lξ if and only if

detHξ(λ) = 0, (9)
where

Hξ(λ) := λI − M0 −

m
∑

i=1

(

Mie
−λτi + M−ie

λτi
)

(10)

and the matricesM0, Mi, M−i are defined in Theorem 2.1.
Proof. The proof is given in Appendix, Section IX.

By Proposition 2.2 and Theorem 4.1, the eigenvalues of
the nonlinear eigenvalue problem (11) are symmetric with
respect to the imaginary axis similar to the Hamiltonian
matrix in the delay-free case.

The solutions of (9) can be found by solving

Hξ(λ) v = 0, λ ∈ C, v ∈ C2n, v 6= 0, (11)

which in general has an infinite number of solution.
Theorem 2.1 and 4.1 establish the connections between

the singular values of the transfer function of (1), the
linear infinite dimensional eigenvalue problem (4), and the
nonlinear eigenvalue problem (11).

The correction method is based on the property that if
ξ̂ = ‖G(jω)‖H∞

, then (11) has a multiple non-semisimple
eigenvalue:

If ξ̂ ≥ 0 and ω̂ ≥ 0 are such that
‖G(jω)‖H∞

= ξ̂ = σ1(G(jω̂)), (12)
then setting

hξ(λ) = detHξ(λ),

the pair(ω̂, ξ̂) satisfies

hξ(jω) = 0, h′
ξ(jω) = 0. (13)

These complex-valued equations seem over-determined but
this is not the case due to the spectral properties ofHξ(λ).
Using the symmetry of the eigenvalues of the nonlinear
eigenvalue problem (11) with respect to imaginary axis, we
can write the following:

Corollary 4.2: For ω ≥ 0, we have
ℑ hξ(jω) = 0 (14)

and
ℜ h′

ξ(jω) = 0. (15)
Proof. From the symmetry property of the eigenvalues with
respect to the imaginary axis,

hξ(λ) = hξ(−λ), h′
ξ(λ) = −h′

ξ(−λ).

Substitutingλ = jω yields

hξ(jω) = hξ(−jω) = (hξ(jω))
∗
,

h′
ξ(jω) = −h′

ξ(−jω) = −
(

h′
ξ(jω)

)∗

,

and the assertions follow. �

Using Corollary 4.2 we can simplify the conditions (13) to:
{

ℜ hξ(jω) = 0
ℑ h′

ξ(jω) = 0
. (16)

Hence, the pair(ω̂, ξ̂) satisfying (12) can be directly com-
puted from the two equations (16), e.g. using Newton’s
method, provided that good starting values are available.
The drawback of working directly with (16) is that an explicit
expression for the determinant ofHξ is required. To avoid
this, let u, v ∈ Cn be such that

Hξ(jω)

[

u

v

]

= 0, n(u, v) = 0,

where n(u, v) = 0 is a normalizing condition. Given the
structure ofHξ it can be verified that a corresponding left
eigenvector is given by[−v∗ u∗]. According to [8], we get

h′
ξ(jω) = 0 ⇔ [−v∗ u∗] H ′

ξ(jω)

[

u

v

]

= 0.

A simple computation yields:

[−v∗ u∗] H′

ξ(jω)





u

v



=2ℑ{v∗(I+
∑ p

i=1 Aiτie
−jωτi )u}, (17)

which is always real. This is a consequence of the property
(15).
Taking into account the above results, we end up with4n+3
real equations









H(jω, ξ)

[

u,

v

]

= 0, n(u, v) = 0

ℑ
{

v∗
(

I +
∑p

i=1 Aiτie
−jωτi

)

u
}

= 0
(18)

in the 4n + 2 unknownsℜ(v),ℑ(v),ℜ(u),ℑ(u), ω and ξ.
These equations are still overdetermined because the prop-
erty (14) is not explicitly exploited in the formulation, unlike
the property (15). However, it makes the equations (18)
solvable in least squares sense, and the(ω, ξ) components
have a one-to-one-correspondence with the solutions of (16).

In conclusion, as a result of the approximation step, the
largestξ for which LN

ξ has the imaginary axis eigenvalues
and their corresponding eigenvectors are the approximate
results of the largest eigenvalue ofG. Using these results as
estimates of(ξ̂, ω̂) satisfying (12) andu andv, we can find
the exact values by solving (18). At the end of the correction
step, the exactH∞ norm ofG (1) and the achieved frequency
are equal toξ = ξ̂ andω = ω̂ respectively.

V. A LGORITHM

We present two algorithms which are based on the rela-
tions between the singular values of the transfer function
G(jω) and the spectrum of the operatorLξ, described
in Theorem 2.1 and the correction method based on the
nonlinear eigenvalue problem defined in (18). From these
relations we get:
‖G(jω)‖H∞

= sup{ξ ∈ R+ : operator Lξ has an

eigenvalue on the imaginary axis}. (19)

The fact that the infinite-dimensional operatorLξ can be
approximated with the matrixLN

ξ , as outlined in Section III,
and the fact that an estimate of theH∞ norm of G can be
corrected to the true value, as outlined in Section IV, suggest
the following predictor-corrector computational scheme:

1) for fixed N , determine

sup{ξ ∈ R+ : matrix LN
ξ has an eigenvalue

on the imaginary axis} (20)

and determine the corresponding eigenvalues on the
imaginary axis;

2) correct the results from the previous step by solving
the equations (18).

Under a mild condition on the grid, the next theorem
allows to interpret step1 as computing theH∞ norm of
an approximation ofG.

Theorem 5.1:Assume that the meshΩN is symmetric
around the zero as given in (7). LetpN be the polynomial
of the degree2N + 1 satisfying the conditions,

pN (0; λ) = 1, (21)

p′N (θi; λ) = λpN (θi; λ), i = −N, . . . ,−1, 1, . . . , N.

Let ξ > 0 be such thatdet(DT D − ξ2I) 6= 0. The matrix
LN

ξ has an imaginary axis eigenvalueλ = jω if and only if
GN (jω) has a singular value equal toξ where

GN (jω) = C (jωI − A0 −
∑m

i=1 AipN(−τi; jω))
−1

B + D.

Proof. The proof is given in Appendix, Section IX.

Remark: As we shall see later, the functionspN (−τi, λ)
are proper rational functions inλ.

In what follows we assume that the gridΩN , employed
in the discretization ofLξ, is symmetric around zero, i.e. it
satisfies (7). Theorem 5.1 guarantees thatLN

ξ has eigenvalues
on the imaginary axis for all

ξ ∈ [σ1(D), ‖GN (jω)‖H∞
]

and no eigenvalues on the imaginary axis for
ξ > ‖GN (jω)‖H∞

. Thus the supremum in (20) exists.
In the first algorithm, the prediction step is based on the

bisection algorithm presented in [6].
Algorithm 5.2:

Input: system data,N , symmetric gridΩN , tolerance tol for
prediction step
Output: ‖G(jω)‖H∞

Prediction step:
1) compute a lower boundξl on ‖GN (jω)‖H∞

, e.g. ξl :=
max {σ1(G(0)), σ1(D), tol}
set upper bound,ξh := ∞

2) while ξh − ξl > 2 tol

2.1 if ξh = ∞, setξ := 2ξl, else setξ = (ξl + ξh)/2
2.2 computeEξ, the set of eigenvalues of the matrixLN

ξ on
the positive imaginary axis

2.3 if Eξ = φ, thenξh = ξ, elseξl = ξ

{result: estimate(ξh + ξl)/2 for ‖GN (jω)‖H∞
}

Correction step:
3) determine all eigenvalues{jω(1), . . . , jω(p)} of LN

ξl
on the

positive imaginary axis, and the corresponding eigenvectors
{

x(1), . . . , x(p)
}

.

4) for all i ∈ {1, . . . , p}, solve (18) with starting values[

u
v

]

= x
(i)
0 , ω = ω(i), ξ = ξl, σ = 0

denote the solution with(ũ(i), ṽ(i), ω̃(i), ξ̃(i)).
5) set‖G(jω)‖H∞

:= max1≤i≤p ξ̃(i).
In the prediction step of the second algorithm, we use the

fast iterative algorithm given in [5] for the prediction step:
Given a transfer functionGN defined in Theorem 5.1 and
its correspondingHamiltonian-likematrix LN

ξ (by Theorem
5.1), the largest singular values ofGN are calculated as
follows:

• For a fixed level setξ (shown as dashed lines in
Figure 1), calculate the imaginary axis eigenvalues of
LN

ξ (shown in gray dots in Figure), these eigenvalues
are also the frequencies of the singular values equal to
ξ by Theorem 5.1,

• Find the middle points on each interval of the calculated
frequencies (shown with cross signs in Figure), and
calculate the largest singular value of each middle point
(shown in black dots in the Figure),

• Set the next level setξ to the maximum of the calculated
largest singular values at the middle points.

This algorithm [5] is quadratically convergent and well
known method in the computation ofH∞ norms for the
finite dimensional systems. The overall algorithm for the
computation ofH∞ norm of (1) becomes:

Algorithm 5.3:
Input: system data,N , symmetric gridΩN , candidate critical
frequencyωt if available,

tolerance tol for prediction step
Output: ‖G(jω)‖H∞
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Prediction step:
1) compute a lower boundξl on ‖GN (jω)‖H∞

,
e.g.ξl := max {σ1(G(0)), σ1(D), tol, σ1(GN (jωt))}

2) repeat until break
2.1 setξ := ξl(1 + 2 tol)
2.2 compute the set of eigenvaluesEξ of the matrixLN

ξ on
the positive imaginary axis,
Eξ :=

{

jω(1), jω(2), . . .
}

, with 0 ≤ ω(1) < ω(2) < . . .

2.3 if Eξ = φ, break
else
µ(i) :=

√
ω(i)ω(i+1), i = 1, 2, . . .

computeσ1(GN (jµ(i))), i = 1, 2, . . .
setξl := maxi σ1(GN (jµ(i)))

{result: estimate(ξ + ξl)/2 for ‖GN (jω)‖H∞
}

Correction step:
follow the steps 3.-5. of Algorithm 5.2
In Step 2.3 of Algorithm 5.3, we need the evaluation of the

GN (jω) at specific frequencies. This can be done as follows:
Evaluation of GN

Algorithm 5.3 relies on the evaluation of the function
GN , and, hence, on the evaluation of the polynomials
pN (−τi; λ), i = 1, . . . , m for several values ofλ. Given
the polynomial basisBi(t), we representpN (·; λ):

pN(t; λ) =
∑2N

i=0 αiBi(t).

From its definitionpN (·; λ) satisfies the conditions

pN(0; λ) = 1, andp′N (θi; λ) = λpN (θi; λ),

i ∈ {−N, . . . , N} ∪ {1, . . . , N}. (22)

For λ 6= 0, the conditions can be written as
(

λ

[

01×(2N+1)

M

]

−

[

b

N

])

α =

[

−1
02N×1

]

, (23)

where Mij = Bj−1(θi−(N−1)), Nij = B′
j−1(θi−(N−1)),

b1j = Bj−1(0) and αj1 = αj−1 for i = 1, . . . , 2N and
j = 1, . . . , 2N + 1.

After solving (23) for a given value ofλ we can evaluate
pN(−τi; λ) =

∑2N

i=0 αiBi(−τi), i = 0, . . . , m.

Remark 5.4:Although the prediction step in Algo-
rithm 5.3 corresponds to computing‖GN (λ)‖H∞

, the matrix
function GN (λ) or the rational functionspN (τi; λ) never
need to be explicitly computed (note that they stem from a
particularinterpretationof the effect of a spectral discretiza-
tion of the operatorLξ into the matrixLN

ξ ). Algorithm 5.3
only relies on computing the eigenvalues ofLN

ξ and on
evaluatingGN (jω) at specific frequencies.

Remark 5.5:The definition of GN in (22) inter-
prets the term pN(t, λ) as an approximation of the
term eλt over the whole interval[−τmax, τmax] where
τmax = max{τ1, . . . , τm}. Note that the use of the well-
known Padé approximation for the time- delay will cause
numerically bad-scaled matrix inLN

ξ due to the different
magnitudes in the Padé coefficients. Note that the Padé
approximation depends on the time-delay and for multiple
delays, each delay is approximated separately which will
increase theLN

ξ dimension considerably. However, the term
pN (t, λ) approximates multiple delays with a single term.

Remark 5.6:Note that the prediction and correction steps
are to some extent independent of each other. In particular,
other choices for a finite-dimensional approximation in the
prediction step are possible (e.g., using Padé-like approxi-
mations or the frequency grid).

Remark 5.7:The numerical method for computingH∞

norm can be used for computingL∞ norm of the time-delay
system without any modification.

VI. EXAMPLE

The time-delay system (1) has the dimensions asm = 7,
n = 10, nu = 2, ny = 4 with delaysτ1 = 0.1, τ2 = 0.2,
τ3 = 0.3, τ4 = 0.4, τ5 = 0.5, τ6 = 0.6, τ7 = 0.8.

To illustrate insights of the algorithm and results, the
maximum singular value plot of the transfer functionG(jω)
(1) and that of the discretized transfer functionGN (jω) are
shown in Figure 2 with blue and red lines whereN = 6.
Note that the approximated transfer function has almost same
behavior untilω = 10. The iterations in the prediction step
of the second algorithm can be seen in Figure 1. After three
level set iterations, the prediction step yieldsξ = 6.0436
and the frequenciesω(1) = 5.1660 andω(2) = 5.1666. Two
frequencies converge to the peak of the maximum singular
value plotξ = 6.4040 at ω̃(1) = ω̃(2) = 5.1662. Therefore,
the H∞ norm of the time-delay system is‖G(jω)‖H∞

=
6.4040.

The problem data for the above benchmark exam-
ple and a MATLAB implementation of our code for
the H∞ norm computation are available at the website
http://www.cs.kuleuven.be/˜wimm/software/hinf .

VII. C ONCLUSION

A numerically stable method to computeH∞ norm of
time-delay system with arbitrary number of delays is given.
As a generalization of the finite dimensional case, we show
the connection between singular values of a transfer function
and the eigenvalues of an infinite dimensional linear operator,
equivalent to the Hamiltonian matrix in delay free case. By
the discretization of the infinite dimensional linear operator,
an approximation ofH∞ norm of the time-delay system is
found. This result is corrected using the equations based on
the nonlinear eigenvalue problem. The algorithms are easily
extendable to the systems with distributed delays.
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IX. A PPENDIX

Proof of Theorem 4.1. Assume thatLξ u = λu holds.
By (3), we obtainu(t) = eλtv, t ∈ [−τmax, τmax], with
v ∈ C

2n. Taking into account the boundary condition (2),
the nonlinear eigenvalue problem is satisfied,Hξ(λ)v = 0.
Conversely, ifHξ(λ)v = 0, then it is readily verified thatu ≡
veλθ, θ ∈ [−τmax, τmax], belongs toD(Lξ) and satisfies
(Lξ − λI)u = 0. �

The following theorem shows the connection between
the singular value ofG equal toξ and the imaginary axis
eigenvalue of the nonlinear eigenvalue problem (11).

Theorem 9.1:Let ξ > 0 be such that the matrix
det(Dξ) 6= 0. For ω ≥ 0, the matrixG(jω) has a singular
value equal toξ if and only if λ = jω is a solution of the
equation

detHξ(λ) = 0, (24)

whereDξ andHξ are defined in Theorem 4.1.
Proof. The proof is similar to the proof of Proposition 22
in [7]. For all ω ∈ R, we have the relation

detHξ(jω) det Dξ(jω) = det(G∗(jω)G(jω) − ξ2I)

det

([

A(jω) 0
0 −A(jω)∗

])

, (25)

whereA(jω) = jωI − A0 −
∑m

i=1 Aie
−jωτi . Both left and

right hand side can be interpreted as expressions for the
determinant of the 2-by-2 block matrix





A(jω) 0 −B

CT C −A(jω)∗ CT D

DT C BT Dξ





using Schur complements. SinceDξ is non-singular andG
is stable, we get from (25):

det(G∗(jω)G(jω) − ξ2I) = 0 ⇔ detHξ(jω) = 0.
This is equivalent to the assertion of the theorem. �

Proof of Theorem 2.1:Theorem 2.1 follows from Theorem
9.1 and Theorem 4.1.
Proof of Proposition 2.2: It can be verified that

Hξ(−λ̄)=−













0 −1
1 0



⊗I



Hξ(λ)









0 1
−1 0



⊗I









∗

,

hence,
detHξ(−λ̄) = (detHξ(λ))

∗
. (26)

By Theorem 4.1, the proposition follows. �

Proof of Theorem 5.1: As in the continuous case the
discretized linear eigenvalue problem

LN
ξ x = λx, λ ∈ C, x ∈ C

(2N+1)2n, x 6= 0, (27)
has a nonlinear eigenvalue problem of dimension2n as
counterpart. To see this, we get from (6) and (27):
(PNx)′(θN,i) = λxi = λPNx(θN,i)

for i ∈ {−N, . . . , N}, i 6= 0 (28)

M0PNx(0) +

m
∑

i=1

(MiPNx(−τi) + M−iPNx(τi)) = λx0

= λPNx(0). (29)

FromPNx(0) = x0 and (28) it follows that
PNx(·) = pN (·; λ)x0, (30)

wherepN (·; λ) : R → C is thecollocation polynomialfor
the equation

ż(t) = λz(t), z, λ ∈ C, (31)
v which satisfies (31) onΩN \ {0}, as well the interpolating
condition pN (0; λ) = 1. Note that for a fixed value oft
the functionpN(t; λ) is a rational function inλ. When
substituting (30) in (29) we arrive at the discretized nonlinear
eigenvalue problem (32) and (33),

HN
ξ (λ) x0 = 0, (32)

where
HN

ξ (λ)=λI−M0−
∑

m
i=1(MipN (−τi; λ)+M−ipN (τi, λ)). (33)

and the matricesM0, Mi, M−i are defined in Theorem 2.1.
The nonlinear eigenvalue problem (32) is equivalent to the
linear infinite dimensional eigenvalue problem (27). The
expressions (32)-(33) can also be interpreted as a direct
approximation of (11) and (10).

By Proposition 3.1, the eigenvalues of (27) are symmetric
with respect to the imaginary axis. Using the equivalence of
(27) and (32), same symmetry property is valid for (32). The
assertion follows from the arguments mentioned in the proof
of Theorem 9.1. �

Proof of Proposition 3.1:The condition on the mesh assures
that

pN(−τi; λ) = pN(τi; −λ), ∀λ ∈ C, ∀i = 0, . . . , N.

(34)
Next, using the same arguments as in the proof of Proposi-
tion 2.2 we arrive at

detHN
ξ (−λ̄) = (detHN

ξ (λ))∗. (35)
The Proposition follows from (35) and the arguments men-
tioned in the proof of Theorem 5.1 on the equivalence of the
eigenvalue problems (27) and (32). �


