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Abstract— In this paper we consider the computation ofH
norm of retarded time-delay systems with discrete pointwie
state delays. It is well known that in the finite dimensional ase
H~ norm of a system is computed using the connection between
the singular values of the transfer function and the imaginay
axis eigenvalues of an Hamiltonian matrix. We show a similar
connection between the singular values of a transfer funabin
of a time-delay system and the imaginary axis eigenvalues ah

Db a e i ! ! In Section lll, we approximate the infinite-dimensional
infinite dimensional operator L. Using spectral methods, this operator L by a finite-dimensional matrix approximation
linear operator is approximated with a matrix. The approx-

N . .
imate Ho., norm of the time-delay system is calculated using Ef ' We show that for "’,‘ flxgd level _S@ > 0, there is

the connection between the imaginary eigenvalues of this iix @ relation between the imaginary axis eigenvalues of the
and the singular values of a finite dimensional approximatio  matrix EéV and the singular values of a finite-dimensional

of the time-delay system. Finally the approximate results @  gpproximation ofG equal to&. Therefore, theH.. norm
corrected by solving a set of equations which are obtained &m calculated by the level set methods is the H.. norm
the reformulation of the eigenvalue problem for £¢ as a finite iy . . - S S e

of the finite dimensional approximation 6f.

dimensional nonlinear eigenvalue problem.
In Section IV, we correct the approximate results by
using the property that the eigenvalues of the linear irinit
In robust control of linear systems, stability and perfordimensional operator’: appear as solutions of a finite
mance criteria are often expressedty, norms of appro- dimensional nonlinear eigenvalue problem. This allows to
priately defined transfer functions. Therefore, the at@ity ~ write the conditions to characterize the peaks in singular
of robust methods to computd,, norms is essential in a value plot and correct the approximaté,, norm.
computer aided control system design [11]. Two numerical algorithms based on level set methods [6],
The computation of{., norm for the finite dimensional [5] for H., norm computation of the time-delay system are
plants is based on the relation between the existence of then in Section V. A numerical example and concluding
singular values of the transfer function equal to the fixedemarks are given in Section VI and VII.
value and the existence of the imaginary axis eigenvaluesNotation:
of the corresponding Hamiltonian matrix of the same fixed'he notation in the paper is standard and given below.
V?"“e [6]. This relation allows the computaﬂopr)o norm C,R: the field of the complex and real numbers,
via the well-known Ieyel set method [1]. It is possible _to C": n-dimensional complex space,
set the level fpr the singular vaI_ues of the tr_ansfer fumctio A*:  complex conjugate transpose of the matix
using the re_Iatlon above and achu_ave qua(_jrgtlca_lly com_ar&rg A-T . transpose of the inverse matrix df
algorithms inH., norm computation for finite dimensional

By this relation, we extended the level set methods to the
time-delay systems. The difference lies in the fact that in
every iteration of the levef, the imaginary axis eigenvalues
of the infinite-dimensional linear operatGg are required in-
stead of that of Hamiltonian matrix in the finite dimensional
delay-free case.

I. INTRODUCTION

plants [2], [5] D(.): domain of an operator,
is pap ' ; o;(A): ™ singular value ofA,
In this paper, we consider the computation of the, W)+ real part of the complex numbe

norm of the stable time-delay systet with the transfer gg

. ) : imaginary part of the complex number
function representation, u) ginary p P

Qls) = C A M A —risy L det(A) : determinant of the matrixl.

(5) = C(s] = Ao = D icy i ) an; + Dn X(i) Tmax : the maximum of the delay&r, ..., 7,) in (1).
where the system matrices aué’”", B, . o, the space of continuous complex functions.
Drvxme i =0,...,m are real-valued and the time delays,

(11,...,7m), are nonnegative real numbers. Equivalently, the [I. LINEAR INFINITE-DIMENSIONAL EIGENVALUE

Ho norm of (1) is defined as the largest singular value of
the G(jw) over all the frequency interval.

In Section Il, it is shown that giveé > 0, the existence of
the singular values of the transfer function (1) equa{ tis
equivalent to the existence of the imaginary axis eigeraslu
of the linear infinite-dimensional operatdy.

PROBLEM

The connection between the singular values of a transfer
function and the imaginary eigenvalues of a corresponding
Hamiltonian matrix is given in [6], [2] that laid the basisrfo
the established level set methods to compite norms. The
following theorem generalizes this connection to the time-
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Theorem 2.1:Let £ > 0 be such that the matrix

D¢ :=D"D — €I



is non-singular. Fow > 0, the matrixG(jw) has a singular [1l. FINITE-DIMENSIONAL APPROXIMATION

value equal tof > 0 if and only if A = jw is an In this section, the linear infinite dimensional eigenvalue
eigenvalue of the linear 2|nf|n|teld|rr_1ensu?nal operaferon  proplem (4) is discretized based on approximating the
X :=C([~Tmax, Tmax], C*") which is defined by infinite-dimensional operataf, by a matrix using apectral

method(see, e.g. [9], [3], [4]). Given a positive integéf,
we consider a mesky of 2N + 1 distinct points in the
interval [—Tmax; Tmax):

D(Le)={peX:¢ €X,

#(0) = Mog(0) + > (Mig(—7:) + M_;8(7:))}, (2)

=1 QN:{oN,ia i:—N,...,N}, (5)
Leo= ¢, ¢ € D(Le) (3) Wwhere
with —Tmax <On N <...<Ono=0<:-<ONnN < Tmax-
_ _ This allows to replace the continuous spakewith the
_ 11T _ 1T
My = - _ spaceX y of discrete functions defined over the me3R,
. AOQCBT%T%C P BéjjéD]f) gt | X of discrete functions defined over the megh
¢ 3 4o T 3 i.e. any functiong € X is discretized into a block vector
M; = ’gi 8 , M_; = { 8 —SIT , 1<i<N. z =2y - 2% € Xy with components
Proof. The proof is given in Append;x, Section IX. zi = ¢(On:) €C*™, i=-N,...,N.

Equivalently Theorem 2.1 can be stated that there is g Pyz, = € Xy be the uniqueC2” valued interpolating
singular value ofG equal to at w = wy, 0;(G(jwo)) = &, polynomial of degree< 2N satisfying
if and only if the eigenvalue problem for the linear operator -

[:5 'PNZ(GNJ') =x;, t=—N,...,N.
M—-LHu=0: Xe€C, ue X, u#0. (4) In this way, the operatof, over X can be approximated
with the matrixﬁé.\’ . Xy — Xy, defined as

has a solution fo = jwy. (Eév x) _ (PN:C)' (Oni), i=-N,...,—1,1,...,N
Although the operatof, generally has infinite number of ! m

eigenva_llues_, one ce}n_show that_ t_he number of e_igenvalu@/g,éV x)o = MyPna(0) + Z(Mﬂ’zv:v(—n)

on the imaginary axis is always finite. Therefore, eigerwalu =1

problem (4) is computationally well-posed. +M_;Pnz(1;))  (6)

Proposition 2.2: \ is an eigenvalue of the linear operator
L if and only if —\ is an eigenvalue of the linear operator

ﬁ&' PNZC:Z;CV:_NZN,]C Tk,

Proof. The prgof 'S given in Apperldlx, Section I.X' where the Lagrange polynomialg ;. are real valued poly-
By Proposition 2.2, the set of eigenvaluesfyf is sym- nomials of degre@ N’ satisfying ’

metric with respect to the imaginary axis. In the delay-free _
case, the operataf, reduces to a Hamiltonian matrix. Ing(On.:) = { (1) t= z,

The key role of Theorem 2.1 is that it reduces the i#k
H norm computation of (1) into the bisection search fowe obtain the explicit form

Using the Lagrange representation7ef;x,

maximum level set for which the linear operatof: has [ d-N-N ... d-NN ]
imaginary axis eigenvalues.
Instead of solving the difficult linear infinite dimensional ) '
eigenvalue problem, we can use the connection in Theo- dor-n o don (BN 1) (2N A1y
rem 2.1 and apply the level set methods for #ig, norm € Z*N ZN * ’
computation of (1) in two steps: L=N— e LN
1) The approximate solution of the eigenvalue problem
can be calculated by solving the standard linear eigen- LdN-N .. dNN
value problem of the discretized linear operatoilef  where
2) The approximate results can be corrected by using;zuC = lﬁv,k(ezv,i)fa i,k€{-N,...,N}, i #0
the property that the eigenvalues of the linear infiniteq, = My 2o + S (Ml i (—7k) + M_pln x(1h))
dimensional operatof, appear as solutions of a finite 4, = St (Ml g (—71) + Mgy 1 (k)
dimensional nonlinear eigenvalue problem. ke{-N,...,N}, k#0.

The approximation of the linear operatdl; and the  Note that all the problem specific information and the
corresponding standard eigenvalue problem (4) is given paramete are concentrated in the middle row ﬁg’, ie.

Section Ill. The correction algorithm of the approximatethe element$a_y, ..., an), while all other elements oztév
results in the second step is explained in Section IV. can be computed beforehand.



The matrix £Y is a dense matrix with dimensionswhich in general has an infinite number of solution.
(2N +1)(2n) x (2N + 1)(2n). Using the approach at Sec- Theorem 2.1 and 4.1 establish the connections between
tion 2.2.2 in [10] based on appropriate choice of the polythe singular values of the transfer function of (1), the
nomial basis and the grid, the eigenvalue probIemLf,@’r linear infinite dimensional eigenvalue problem (4), and the
can be written as a sparse generalized eigenvalue problemonlinear eigenvalue problem (11).
Therefore, large-scale methods can be utilized for theatine The correction method is based on the property that if
eigenvalue problem. £ = |G(jw)||3... then (11) has a multiple non-semisimple
Since the methods for computiftg., horms proposed in eigenvalue:
[7] are based on checking the presence of eigenvaluéévof If £>0and® > 0 are such that

on the imaginary axis and thus strongly rely on the symmetry 1GGw) |l = € = a1(G(j@)), (12)
of the eigenvalues with respect to the imaginary axis, it if,an setting
important that this property igreservedn the discretization. he(XN) = det He(N),

The following Proposition gives the condition on the meshhe pair(, £) satisfies
such that this symmetry holds. . .
Proposition 3.1:If the meshQy satisfies he(jw) =0, he(jw) = 0. (13)
On._i=—On: i=1,....N, @) Thege complex-valued equations seem over-dgtermined but
this is not the case due to the spectral properties/gf)).
B Using the symmetry of the eigenvalues of the nonlinear
det ()\I — Lév) =0 < det (—)\ — Eév) =0. (8) eigenvalue problem (11) with respect to imaginary axis, we

then the following result hold: for al\ € C, we have

Proof. The proof is given in Appendix, Section IX. can write the following:
We are primarily interested in the eigenvaluesCgfon the Corollary 4.2: For w > 0, we have
imaginary axis. These eigenvalues are typically among the S he(jw) =0 (14)
smallest eigenvalues and one can easily show that the indis
vidual eigenvalues otév exhibit spectral convergence to the R hé(jw) =0. (15)

corresponding eigenvalues 6¢ (following the lines of [3]). Proof. From the symmetry property of the eigenvalues with
Since the symmetry property of the spectrum is preserved jaspect to the imaginary axis,

the discretization, a small value ¢¥ is sufficient in most B Py
practical problems for computing a good approximation of he(A) = he(=A),  he(A) = —hg(=).
the H..-norm which can be employed as a starting point foBubstitutingh = jw yields

a direct computation. he(jw) = he(—jw) = (he(jw))", )
V. CORRECTION OFH ., NORM he(jw) = —hi(—jw) = — (hé(jw)) ,

By using the finite dimensional level set methods, th@nd the assertions follow. O
largest level sef Whereﬁév has imaginary axis eigenvaluesUsing Corollary 4.2 we can simplify the conditions (13) to:
and their corresponding frequencies are computed. In the { R he(jw) =0 (16)
correction step, these approximate results are corregted b R h’f(jw) =0

using the property that the eigenvalues of fhieappear as Hence, the paif, {) satisfying (12) can be directly com-
solutions of a finite dimensional nonlinear eigenvalue PrObputed from the two equations (16), e.g. using Newton’s
lem. The following theorem establishes the link between thgethod, provided that good starting values are available.
linear infinite dimensional (4) and the nonlinear eigengaluTne drawback of working directly with (16) is that an expflici

problem. _ expression for the determinant &f; is required. To avoid
Theorem 4.1:Let £ > 0 be such that the matrix this, letu,v € C" be such that
D¢ :=DTD — €1 T
is non-singular. Then) is an eigenvalue of linear operator He(jw) { v } =0, n(u,v) =0,

Le if and only if det He()\) = 0, (9) wheren(u,v) = 0 is a normalizing condition. Given the

where structure of H, it can be verified that a corresponding left

He(\) = A — My — zm: (M-e*”i M _e,\ﬂ.) (10) eigenvector is given by—v* u*]. According to [8], we get
i=1 he(jw) = 0 & [—v* u*] HY(jw) [ Y ] =0.
and the matriced/,, M;, M_; are defined in Theorem 2.1. ] ) ] _ v
Proof. The proof is given in Appendix, Section IX. A simple computation yields:

By Proposition 2.2 and Theorem 4.1, the eigenvalues of |_ . - Hg(jw)[ u }_m{v*(Hzpl Avrie=*m )}, (17)
the nonlinear eigenvalue problem (11) are symmetric with v N

respect to the imaginary axis similar to the Hamiltonian,hich is always real. This is a consequence of the property
matrix in the delay-free case. (15).

The solutions of (9) can be found by solving Taking into account the above results, we end up wWith-3
He(N)v=0, NeC, veC?™ v+#£0, (11) real equations



H(jw, €) Ul 0, n(u,v)=0 Remark: As we shall see later, the functiopg, (—7;, \)
v . (18) are proper rational functions iA.

S{o* (I+ 20, Aime 7T ) u} =0 In what follows we assume that the gridly, employed
in the 4n + 2 unknownsR(v), 3(v), R(u), S(u),w and &. in t_hg discretization of¢, is symmetric around zero, ie. it
These equations are still overdetermined because the prégtisfies (7). Theorem 5.1 guarantees ffithas eigenvalues
erty (14) is not explicitly exploited in the formulation, e~ ON the imaginary axis for all
the property (15). However, it makes the equations (18) ) § € [o1(D), HGN(J’W)H?_W] ) _
solvable in least squares sense, and (thet) components and no eigenvalues on the imaginary axis for
have a one-to-one-correspondence with the solutions 9f (16 > |G (jw)l|7... Thus the supremum in (20) exists.

In conclusion, as a result of the approximation step, the !N the first algorithm, the prediction step is based on the

largest¢ for which £ has the imaginary axis eigenvaluesbisection algorlthm presented in [6].
and their corresponding eigenvectors are the approxima}tr]e'?‘JthO;'tggnmS-cjzétaN svmmetric aridQe. tolerance ol for
results of the largest eigenvalue Gf Using these results as prgdi'ctio);l step » Y g N
estimates of ¢, ) sausfylng (12) and: andv, we can find ~output: [|G(jw) e
the exact values by solving (18). At the end of the correction prediction step:
step, the exack, norm of G (1) and the achieved frequency 1) compute a lower bound; on ||Gn (jw)||x.., €.9.& =

are equal tf = ¢ andw = & respectively. max {01(G(0)), 01(D), tol}
set upper boundy, := oo
V. ALGORITHM 2) while &, — & > 2 tol

. ) 2.1 if &, = oo, seté := 2¢;, else sett = (& + &r)/2
We present two algorithms which are based on the rela- 22 computes,, the set of eigenvalues of the matd’ on

tions between the singular values of the transfer function the positive imaginary axis
G(jw) and the spectrum of the operatdl;, described 2.3 if & = ¢, then&y, = &, elseq; = ¢
in Theorem 2.1 and the correction method based on the {result: estimat&¢, + &) /2 for [|Gn (jw)|l.

nonlinear eigenvalue problem defined in (18). From these COTection step:
relations we get: 3) determine all eigenvalue§iw™, ..., jw™} of £ on the

i positive imaginary axis, and the corresponding eigenvscto
|G(jw)|l#., = sup{€ € Ry : operator L¢ has an RO

..,p}, solve (18) with starting values

The fact that the infinite-dimensional operat6g can be v } =), w=w, £=6, 0=0
approximated with the matri€’, as outlined in Section IlI, denote the solution witlia?, 5, o £0),

and the fact that an estimate of th&,, norm of G can be  5) set||G(jw)|[r.. = maxi<i<p £7.

corrected to the true value, as outlined in Section 1V, sagge In the prediction step of the second algorithm, we use the
the following predictor-corrector computational scheme: fast iterative algorithm given in [5] for the prediction pte

eigenvalue on the imaginary axis}. (19) 4) foralli T gl
u

1) for fixed N, determine Given a transfer functiordzy defined in Theorem 5.1 and
its correspondinddamiltonian-likematrix EéV (by Theorem
sup{¢ € Ry : matrix £ has an eigenvalue 5.1), the largest singular values 6fy are calculated as

on the imaginary axis} (20) follows:

) ) ) o For a fixed level set¢ (shown as dashed lines in
and determine the corresponding eigenvalues on the  Figyre 1), calculate the imaginary axis eigenvalues of

Imaginary axis, _ _ LY (shown in gray dots in Figure), these eigenvalues

2) correct the results from the previous step by solving 46 also the frequencies of the singular values equal to

the equations (18). ¢ by Theorem 5.1,

Under a mild condition on the grid, the next theorem . Find the middle points on each interval of the calculated
allows to interpret sted as computing the,, norm of frequencies (shown with cross signs in Figure), and
an approximation of7. calculate the largest singular value of each middle point

Theorem 5.1:Assume that the mesRy is symmetric (shown in black dots in the Figure),
around the zero as given in (7). Lek, be the polynomial « Set the next level s&tto the maximum of the calculated
of the degre@ N + 1 satisfying the conditions, largest singular values at the middle points.

pn(0; A) = 1, (22) This algorithm [5] is quadratically convergent and well

PN = Mpn(0;N), i=—N,...,—1,1,...,N. known method in the computation df., norms for the

finite dimensional systems. The overall algorithm for the
Let £ > 0 be such thatlet(DTD — ¢2I) # 0. The matrix computation ofH., norm of (1) becomes:

Eév has an imaginary axis eigenvalie= jw if and only if Algorithm 5.3:

Gy (jw) has a singular value equal towhere Input: system data,N, symmetric gridQ2y, candidate critical
. . m -1 frequencyw, if available,

Gn(jw) = C (jwl — Ag = >~ Aipn(—T; jw)) B+ D. tolerance tol for prediction step

Proof. The proof is given in Appendix, Section IX. Output: ||G(jw)||He
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Prediction step:
1) compute a lower boung; on ||Gn (jw)||Heo s
e.9.& := max {01(G(0)), 01(D), tol, 01 (G (jwr))}
2) repeat until break
2.1 set¢ :=&(1+ 2 tol)
2.2 compute the set of eigenvalugs of the matrix[,é" on
the positive imaginary axis,

& = 1 jw® jw® L witho < w® <w® < ...
2.3 if & = ¢, break

else

p = V@D, §=1,2,...

computeo (G (5u?)), (z =1,2,...

set& ;= max; o1(Gn(Ju ) )
{result: estimaté¢ + ¢&;)/2 for ||Gn (jw) | 1o }
Correction step:
follow the steps 3.-5. of Algorithm 5.2

In Step 2.3 of Algorithm 5.3, we need the evaluation of th

Remark 5.5:The definiton of Gx in (22) inter-
prets the termpy(t,A) as an approximation of the
term e* over the whole interval[—7iax, Tmax] Where
Tmaz = max{7,...,7n . Note that the use of the well-
known Padé approximation for the time- delay will cause
numerically bad-scaled matrix ilﬁ:év due to the different
magnitudes in the Padé coefficients. Note that the Padé
approximation depends on the time-delay and for multiple
delays, each delay is approximated separately which will
increase theZY dimension considerably. However, the term
pn(t, \) approximates multiple delays with a single term.

Remark 5.6:Note that the prediction and correction steps
are to some extent independent of each other. In particular,
other choices for a finite-dimensional approximation in the
prediction step are possible (e.g., using Padé-like agpro
mations or the frequency grid).

Remark 5.7:The numerical method for computirgf ..
norm can be used for computinf},, norm of the time-delay
system without any modification.

V1. EXAMPLE

The time-delay system (1) has the dimensionsras: 7,
n = 10, n, = 2, n, = 4 with delaysm = 0.1, » = 0.2,
T3 = 0.3, T4 = 0.4, Ts — 0.5, T6 — 0.6, T7 = 0.8.
To illustrate insights of the algorithm and results, the
maximum singular value plot of the transfer functiGiijw)
(1) and that of the discretized transfer functiGi; (jw) are

ghown in Figure 2 with blue and red lines wheke= 6.

G (jw) at specific frequencies. This can be done as followdYote that the approximated transfer function has almosesam

Evaluation of Gn

Algorithm 5.3 relies on the evaluation of the function

Gy, and, hence, on the evaluation of the polynomial
pn(—7i; A), i = 1,...,m for several values oh. Given
the polynomial basiB;(t), we represenpy (-; A):

(s A) = 3270 aiBi(h).
From its definitionpy (-; \) satisfies the conditions

pn(0; A) =1, andply (0:i; A) = Apn (055 N),
i€{=N,...,N}U{L,...,N}. (22)

For A # 0, the conditions can be written as

L =[5 D=l | e

where M;; = Bj_1(0;—(n-1)), Nij = B'j—1(0i-(v-1)),
blj = j_l(O) and a1 = Q-1 for ¢ = 1,...,2N and
j=1,...,2N +1.
After solving (23) for a given value ok we can evaluate
pN(_Ti; /\) = Z?ivo aiBi(—Ti), = 0, ey

Remark 5.4:Although the prediction step in Algo-
rithm 5.3 corresponds to computifigx (A)|| .., the matrix
function Gy () or the rational functiongy(7;; A) never
need to be explicitly computed (note that they stem from
particularinterpretationof the effect of a spectral discretiza-
tion of the operatoi’, into the matrixﬁé.\’). Algorithm 5.3
only relies on computing the eigenvalues ﬁf’ and on
evaluatingG' y (jw) at specific frequencies '

behavior untilw = 10. The iterations in the prediction step
of the second algorithm can be seen in Figure 1. After three
level set iterations, the prediction step yielgls= 6.0436

and the frequencies") = 5.1660 andw® = 5.1666. Two
frequencies converge to the peak of the maximum singular
value ploté = 6.4040 at ") = &(® = 5.1662. Therefore,

the Ho, norm of the time-delay system G (jw)||x.. =
6.4040.

The problem data for the above benchmark exam-
ple and a MATLAB implementation of our code for
the H,, norm computation are available at the website
http://www.cs.kuleuven.be/"wimm/software/hinf

VIl. CONCLUSION

A numerically stable method to compufg.,, norm of
time-delay system with arbitrary number of delays is given.
As a generalization of the finite dimensional case, we show
the connection between singular values of a transfer fancti
and the eigenvalues of an infinite dimensional linear operat
equivalent to the Hamiltonian matrix in delay free case. By
the discretization of the infinite dimensional linear opera
an approximation of{., norm of the time-delay system is
found. This result is corrected using the equations based on

e nonlinear eigenvalue problem. The algorithms areeasil
extendable to the systems with distributed delays.
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IX. APPENDIX v which satisfies (31) ofy \ {0}, as well the interpolating

conditionpy (0; A) = 1. Note that for a fixed value of
the functionpy(¢; A) is a rational function in\. When
substituting (30) in (29) we arrive at the discretized noadir
eigenvalue problem (32) and (33),

Hé\’()\) xo =0, (32)

Proof of Theorem 4.1. Assume thatl, u = Au holds.
By (3), we obtainu(t) = e*v, t € [~Tmax, Tmax), With
v € C?", Taking into account the boundary condition (2),
the nonlinear eigenvalue problem is satisfiét},(\)v = 0.
Conversely, ifff¢(A\)v = 0, then itis readily verified that = | o
ver 0 € [~Tmax, Tmax), Delongs toD(L¢) and satisfies N m o
¢ HY (N=A=Mo—Y 7y (Mipn (=75 N+M_ipn (s, X)), (33)
(Le — M)u :_0- O _ and the matriced/,, M;, M_; are defined in Theorem 2.1.
The following theorem shows the connection betweefne nonlinear eigenvalue problem (32) is equivalent to the
the singular value of~ equal to{ and the imaginary axis |inear infinite dimensional eigenvalue problem (27). The
eigenvalue of the nonlinear eigenvalue problem (11). expressions (32)-(33) can also be interpreted as a direct
Theorem 9.1:Let ¢ > 0 be such that the matrix approximation of (11) and (10).
det(D¢) # 0. Forw > 0, the matrixG(jw) has a singular By Proposition 3.1, the eigenvalues of (27) are symmetric
value equal tct if and only if A = jw is a solution of the wjith respect to the imaginary axis. Using the equivalence of

equation det He()) = 0 (24) (27) and (32), same symmetry property is valid for (32). The

¢ AN assertion follows from the arguments mentioned in the proof
where D, and H, are defined in Theorem 4.1. of Theorem 9.1. 0
Proof. The proof is similar to the proof of Proposition 22 proof of Proposition 3.1: The condition on the mesh assures
in [7]. For all w € R, we have the relation that

—Ti; A) = i —A), VAeC, Vi=0,...,N.
det He (jw) det De(jw) = det (G*(jw)G(jw) — £21) pn(=7i5 A) =px (755 —2) !

A(jw) 0 Next, using the same arguments as in the proof of(s%posi—
det ({ 0 —A(jw)* D , (25) tion 2.2 we arrive at
det HY (—X) = (det HY (\))*. (35)
where A(jw) = jwl — Ag — 321", A;e=#“7. Both left and The Proposition foﬁows from (35) and the arguments men-
right hand side can be interpreted as expressions for tfigned in the proof of Theorem 5.1 on the equivalence of the
determinant of the 2-by-2 block matrix eigenvalue problems (27) and (32). O



